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Abstract 

One mission of the National Air Intelligence Center (NAIC) is the reverse engineering of 

foreign missile weapon systems from incomplete observational data. In the past, intuition 

and repeated runs of a missile performance model were required to converge to a solution 

compatible with observed flight characteristics. This approach can be cumbersome and 

time-consuming, as well as being subject to undesirable influences from the analyst's 

preconceptions and biases. 

An alternative approach has been created to apply genetic algorithm (GA) techniques to 

allow automation of the process, wider exploration of the design space, and more optimal 

solutions matching the observational data. The GA, when interfaced with a missile 

performance model, was able to identify a set of missiles that very closely matched the 

observed performance of a given sample missile. The approach was able to provide the 

analyst with multiple candidate missiles for further analysis that would have been missed 

by the previous trial and error approach. 
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REVERSE ENGINEERING OF FOREIGN MISSILES 
VIA GENETIC ALGORITHM 

I.       Introduction 

1.1 Background 

The National Air Intelligence Center (NAIC) is an organization of the United States Air 

Force located at Wright-Patterson Air Force Base in Dayton, Ohio that works closely 

with the Defense Intelligence Agency of the U.S. government. These agencies are 

responsible for understanding the military capabilities of foreign countries. 

New aerodynamic weapon systems are continually being designed and tested by foreign 

governments. In order for the U.S. government to be prepared for any future conflict 

against these potential adversaries, it is important that we understand other military 

weapon systems and can defend against them. The problem is that foreign militaries do 

not volunteer all the information that is needed to sufficiently describe the abilities of 

their weapon systems. If they did, it would be possible to counter them with defensive 

systems of our own thus giving the U.S. military an advantage. Therefore, intelligence 

production organizations such as NAIC are necessary for the determination of foreign 

military potential. 

The Air Force collects information with a variety of methods, most of which are heavily 

classified. Engineering performance measurements on foreign missiles may be obtained 



by public release of information or by human intelligence. Additionally, missile 

telemetry data may be determined using signal intelligence. Each method provides 

certain features of the missile or its performance to the NAIC analyst. For example, 

waypoint information can be generated from an observed test flight such as altitude, 

range, and velocity versus time. It is the job of the analyst to take these knowns about the 

missile and reverse engineer its design and estimate its complete military capabilities. 

In the past, human intuition and repeated runs of a missile performance program were 

required to converge to a solution compatible with observed flight characteristics. This 

approach required multiple user-defined iterations in order to arrive at a reasonable fit to 

the observed data. 

The analyst would first choose particular values of missile design variables such as 

diameter, length, and mass based upon prior experience and knowledge of missile 

aerodynamics. The analyst would then attempt to fly this unrefined missile along an 

observed flight profile. A predicted flight trajectory was calculated using the missile 

design software, Missile Integrated Design Analysis System (MIDAS), and deviations 

between the predicted and the observed trajectories were noted by the analyst. Changes 

to the missile design were then made with the goal of improving the trajectory match. 

The analyst would then repeat this process until a design was arrived at which more 

closely performed as the observed missile. 



This iterative approach is cumbersome and time-consuming, and is subject to undesirable 

influences based on the analyst's preconceptions and biases. Because of this 

methodology, a single solution may be produced when many different possible solutions 

exist. The entire design space was not being explored very well in this trial and error 

approach. An alternative approach would be to automate the process and take the human 

out of the loop. 

1.2 Problem Statement 

The basic problem of matching missile flight trajectories can be viewed as an 

optimization problem. The goal of this process is to identify a missile design that can 

exactly match the waypoints of the observation. It could be viewed as performing a 

statistical least squares fit of the observed waypoints with a predicted missile trajectory 

[Mendenhall 1992]. 

The hypothesis of this thesis is that a genetic algorithm (GA) can solve this type of 

problem. Various design parameters of the missile can be chosen randomly, then run 

through the same trial and error process as the analyst had done. The genetic algorithm 

learns from successive design iterations, retains the characteristics of the missiles that 

better match the observation, and attempts to improve the match with automatic 

successive approximations. The advantage to using this approach is not only a quicker 

solution of the design problem, but also an unbiased and more in-depth search of the 

potential missile space. 



1.3 Scope and Limitations 

This study was designed to show proof of concept. The analysts at NAIC are interested 

in whether or not the genetic algorithm can assist in the preliminary stages of reverse 

engineering design. Therefore, a hypothetical missile observation has been fabricated 

that does not represent any actual foreign missile. 

1.4 Thesis Overview 

This thesis is organized into four main sections. The first section provides background in 

optimization and the general theory of genetic algorithms, and briefly introduces the 

missile design software MIDAS. The second section deals with the methodology of the 

study. This section explains how the missile design parameters were chosen and how the 

genetic algorithm and MIDAS were tied together into a single process. The remaining 

two sections discuss two sample reverse engineering design problems. The first problem 

is based on very little information about the foreign missile observation, while the second 

assumes that more information is available. After a brief summary, suggestions for 

further follow-on study are proposed. 



II.     Fundamentals 

2.1 General Optimization 

Optimization, simply stated, is the process of finding the minimum or maximum of some 

mathematical function. An optimization problem involving a single variable can usually 

be solved easily. A first course in calculus teaches that taking the derivative of an 

analytical function, setting it equal to zero, and solving results in the critical points ofthat 

function including the optimal minimum and maximum. Functions of two or more 

variables can be solved in a similar method. However, functions of multiple variables 

can sometimes be very difficult to solve. 

Functions may also have multiple extrema, or local maximum or minimum points. 

Standard optimization techniques such as hill-climbing and branch-and-bound, have 

difficulty locating multiple peaks or dips. An example of this is the Himmelblau function 

of two variables shown in Figure 1 [Reklaitis 1983]. This function has four maximums 

of equal value. In trying to locate these extrema, standard hill-climbing techniques would 

start at some location and climb to the top of one of these peaks. This single peak would 

be declared a local maximum. Searching with this approach provides no information 

about the other peaks of equal value, nor does it prove anything about the global 

maximum. The global extrema could be located somewhere else entirely in the design 

space. 



Figure 1 - Himmelblau function 

Genetic algorithms are designed to search a much wider area of the design space, and 

potentially could provide a set of optimal solutions to a given problem. The GA 

approach was selected for this study because multiple extrema were expected in the 

reverse engineering problem. It was believed that several different missile designs could 

match a given set of observations. It is important for the intelligence analyst to explore 

as much of the potential design space as possible, before selecting a single missile design. 

2.2 Genetic Algorithm Theory 

The GA is based upon Charles Darwin's survival of the fittest theory of evolution. It 

copies the natural selection and reproduction processes of biological populations in order 

to strengthen the fitness of the overall population. 



In biological evolution, the individuals of the population are each different. They may be 

differentiated by their height, weight, eye color, hair color, skin color, strength, 

intelligence, and so on. These characteristics or variables are encoded as chromosomes 

within a string of DNA that completely defines the individual. The measure of 

performance, in this biological example, is the fitness of the individual as defined by the 

environment in which the population lives. The individuals with a better or higher fitness 

tend to thrive and reproduce more readily, thereby allowing their desired traits to be 

passed on to their children, while the weaker individuals perish. Over several 

generations, the population becomes optimal in its environment as defined by their fitness 

[Darwin 1859]. 

The GA, as an optimization methodology, is set up in the same manner. That is, 

individuals are defined by some binary encoding of variables and compete with the rest 

of their population for survival. The most fit individuals reproduce and pass the desired 

traits on to future generations, while less fit individuals perish. After several generations, 

the population tends to cluster around the optimum. 

The characteristics or design variables which describe the individuals in a population are 

binary encoded into what essentially represents a string of DNA. Consider for a moment 

a population of automobiles. Discrete variables such as the automobile color can be 

individually modeled using binary encoding, while continuous variables such as 

automobile fuel economy can be discretized within a bounded region. 



As an example of discrete variable encoding, assume that there are only 4 different 

automobile colors to choose from: blue, red, yellow, and green. The binary encoding of 

these colors could be defined as: 00=blue, 01=red, 10=yellow, and ll=green. Only 2 

binary bits are needed to completely describe the color of an individual automobile. If 

more than 4 colors are desired, more bits in the binary code would be required. For 

example, 3 bits represent 8 different colors, 4 bit represent 16 different colors, and so on, 

in powers of 2. 

As an example of continuous variables, consider fuel economy. Assume the bounds for a 

particular design to be within 10 and 30 miles-per-gallon (mpg). If an accuracy of 1.0 

mpg is required, a binary encoding of 5 bits is needed for 32 increments between the 

minimum and maximum. The bits of 00000 would represent the minimum of 10 mpg, 

while the bits of 11111 would represent the maximum of 30 mpg. Each binary increment 

between these bounds would be 0.625 mpg apart, thus making the 32 increments between 

the bounds. If more precision were needed, a discretization of 6 binary digits would give 

64 increments each 0.3125 mpg apart, 7 digits would give 0.15625, and so on. 

Once the traits of an individual are defined, a method is needed to determine the relative 

goodness of individuals. This is accomplished by creating a cost function or fitness 

function, F(x), that depends upon the values of each of the design variables. In essence, 

this is the standard objective function that any optimization technique requires. More 

weight may be placed on some design variables than others, but each contributes some 

positive or negative contribution to the overall fitness of the individual. 



In order to create subsequent generations, the individuals must compete against each 

other for the rights of procreation. The more fit individuals tend to reproduce more often, 

while the less fit tend to die out. This exists within the genetic algorithm as well as in 

biological populations. The reproduction strategy of tournament selection ranks the 

population from most to least fit, and begins a random process of selecting parents with 

the goal of creating children. Two parents are selected to produce two children. Parent 

individuals, with a high fitness, will be chosen to reproduce more often than individuals 

with a lower fitness. Over time, the stronger traits will be retained while the weaker traits 

vanish. 

The children in most GA techniques replace the parents in the next generation. Some 

selection techniques, however, allow parents to compete with their children for entry into 

the next generation. Also, an elitist strategy may ensure that the best individual of the 

current generation is cloned into the next generation. This prevents the best traits from 

accidentally dying off. 

Crossover techniques define the chromosomal make-up of the children by mimicking the 

natural processes of DNA reproduction. The binary strings of both parents are combined 

in some way to produce their children. There are two basic types of reproduction: single- 

point and uniform crossover. Single-point crossover forces a single break in the binary 

code of the parents so that each child obtains some chromosomes from each parent. A 

break is made randomly somewhere within the parents' binary string. One child gets the 

binary code of one parent to the left of the break, while the binary code to the right of the 



break comes from the other parent. The other child gets the opposite. Each child carries 

on certain traits from both parents in this manner. In a similar manner, uniform crossover 

allows multiple breaks in the binary code instead of just one. 

After selection and crossover, mutations are also permitted to explore regions of the 

design space that may have already become extinct or never been explored. A jump 

mutation swaps two random bits within the child's binary string, and a creep mutation 

randomly selects a bit to be changed. The standard GA flow that has just been described 

is shown in Figure 2. The exit criteria may be set at some given number of generations, 

or after some measure of convergence has been reached. 

Eventually, the population will tend to converge to a common point. This would occur if 

the GA were allowed to run for an extended amount of time. An illustration of this can 

be seen in human biological evolution. The Europeans and Africans each progressed 

down separate paths. The Europeans developed pale skin, while the Africans developed 

dark skin. These isolated populations are said to have converged because each 

individual, within the separated populations, holds a common trait. The GA, as an 

optimization tool, can also arrive at this kind of convergence in design within the design 

parameters. 

10 
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Figure 2 - Standard GA Flow 

The GA should also be run several times to account for this convergence and the inherent 

random processes. The initial creation of individuals, selection of parents, crossover 

reproduction, and child mutations are all based on random number draws. Different 

results can be expected between one initial randomization seed and another. On the other 

hand, these differences are not guaranteed and different seeds could end with the same 

results. It is important that several different initialization seeds be performed for any 

given problem that has some degree of randomization [Banks 1996]. 
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The genetic algorithm used for this study [Carroll 1998] incorporates tournament 

selection, binary coding, both jump and creep mutation, and either single-point or 

uniform crossover. Inputs to the GA allowed for variation in the number of variables, 

bounds on the variables, and numerous other options (see Appendices A and C). 

Based on the work of others, the population was set at 100 individuals [Nadon 1996, 

Millhouse 1998]. The uniform crossover rate was 50%, the jump mutation rate 1%, and 

the creep mutation rate 6%. These settings were held constant throughout the study 

because they produced reasonable results. 

2.3 Introduction to MIDAS 

MIDAS is a multi-disciplinary system of computer routines that design, size, and analyze 

missiles. Different engineering disciplines that are considered include mass properties, 

aerodynamics, propulsion, performance, thermal, sensors, and radar cross section. 

MIDAS is particularly applicable to studies performed during the mission analysis and 

concept exploration phases of the missile design process. Good buzzwords to describe its 

fidelity include "first-cut" or "first-order", and not "finite element" or "simulation". The 

emphasis is on characterizing details rather than analyzing them [Lockheed Martin 1995]. 

MIDAS is useful in a parametric approach to missile design. The design process consists 

of choosing a candidate design based on mission requirements, determining the 

capability, and comparing it to the mission requirements in order to see how well it 

12 



performs. After numerous trial and error iterations of this process, a good solution within 

the design space can be identified. 

MIDAS can be run from a graphical user interface or by sequential data file inputs. 

Many aspects of the design must be defined in these input files with respect to the 

multiple engineering disciplines as mentioned above. Some of the general top-level 

inputs include planform geometry, type of propulsion, aerodynamic coefficients, and 

material properties. 

A missile design is defined by a number of specific design parameters within these 

disciplines such as number of stages, diameter, propellant type, chamber pressure, nose 

fineness, fin configuration and size, propellant weight, burn rate, control scheme, and so 

on. Many of the parameters are determined to meet various subsystem requirements such 

as maximum range or average speed, or to produce a better design in terms of production 

cost or other measures of effectiveness. 

Initially, some of the geometry and system details may not be known, but are defined 

implicitly by the laws of physics and assumed engineering judgements. For example, the 

motor case thickness could be determined by a chamber pressure requirement, or a 

required design point thrust is used to determine the nozzle design. The functional 

responsibilities of MIDAS are divided into six primary modules to balance these different 

engineering disciplines. 

•   the Problem Control Module is responsible for sequencing the analyses 

13 



• the Configuration Module performs geometric analysis 

• the Mass Properties Module sizes structural elements to meet load requirements 

• the Aerodynamics Module sizes control surfaces to meet maneuver requirements 

• the Propulsion Module designs a motor to deliver a given thrust 

• the Performance Module flies a specified trajectory 

The Problem Control Module takes the inputs as provided by the analyst, and searches 

for syntax errors and performs other sanity and balancing checks using the other modules. 

MIDAS loops on design then provide iterations for configuration balancing between the 

different disciplines. The loops cycle through the design modules, and match particular 

components that have been specified in terms of a requirement for another module in 

order to provide a complete and consistent configuration definition. Through this 

process, MIDAS can intelligently define a missile that meets the feasibility constraints 

within each of the disciplines based upon a select few input design parameters. 

14 



III.    Methodology 

3.1 Overview 

The current trial and error approach of reverse engineering the foreign missile had to be 

converted into an optimization problem that could be solved by a genetic algorithm. The 

fundamental outcome from this study was the development of a procedure that could 

direct this optimization process. The issues were in how to simplify the entire missile 

design into a short list of design parameters, calculate the candidate missile's trajectory 

by using these parameters, and then devise a fitness function that captured the quality of 

the match of the observation. The entire missile design, with some preliminary 

assumptions, had to be described in mathematical terms that completely described an 

individual missile. 

Certain preliminary assumptions of the missile had to be made in order to keep the 

parameter list manageable during the optimization problem. Examples of these early 

assumptions include the type of propellant (liquid or solid), the number of stages, the 

number of wings or fins (if any), and a large amount of other aerodynamic and material 

properties. The analyst would be required to make some early assumptions, such as 

these, in order to keep the problem within a realistic design space. Even with multiple 

assumptions, there would still be a plethora of candidate missiles that existed. MIDAS 

input files include the preliminary assumptions that were used during this study and are 

listed in Appendix B. 

15 



Another accomplishment of this study involves the connection between the GA and 

MIDAS. The entire interface had to be created to link the design parameters between the 

two models. The design variables were passed from the GA into MIDAS along with the 

early assumptions as described above. MIDAS would then calculate a trajectory using 

the given information. The GA would then calculate a fitness function that compared the 

candidate's predicted trajectory back to the observation. Using this information, 

successive generations of the GA would try to improve the previous generation by 

changing the values of the design parameters. 

3.2 Selection of Design Variables 

MIDAS was used in a simplified manner. Although the total MIDAS database consists 

of about 2000 variables, and a typical data set involves values for about 50-80 variables, 

a single planform was chosen which limited the number of design variables to 12. This 

kept the problem manageable, while still allowing a large potential design space. These 

design variables formed the parameter vector that defined each individual missile. 

The diameter (D), mass (M), and length (L) are intuitively critical parameters of a missile 

design. The lengths of individual sections of the missile were also determined to be 

important. Therefore, the length of the nose (L„), equipment (Le), warhead (Z^), 

propellant (Lp), and boat tail (Lbi) sections were also selected as design variables. In 

addition, the engine was assumed to have solid propellant with a design variable of the 

thrust-to-weight (TAV) ratio. 

16 



The assumed planform consisted of a single stage and included four wings and four fins 

spaced evenly around a circular cross section fuselage. Each wing and fin was identical, 

respectively, with certain assumed parameters based upon aerodynamic rules of thumb. 

The leading edge sweep was 68 degrees; the aspect ratio was 1.2632; and the chord tip- 

to-root ratio was 0.185. The trailing edge was assumed to attach perpendicular to the 

fuselage, and the leading edge of the root chord was located a distance (Xw) from the 

nose. With these parameters assumed, the respective areas of the wings (Aw) and fins (A/) 

would then completely describe the planform configuration. These assumptions of the 

missile planform can be considered early assumptions or can represent known 

observational data. 

The last design parameter was the shape of the nose cone. This was included in the study 

in order to demonstrate the implementation of a discrete design variable. The four 

options for the curve of the nose cone were circular tangent, Von Karman, cone, or 3A 

power Newtonian. 

The initial set of design variables was therefore: 

x = [D, M, Ln, Le, Lw, Lp, Lbt, Xw, Aw, Af, T/W, nose]. 

The bounds of each of these variables were selected to be within realistic ranges for the 

particular observation. These bounds represent the early observational data or can be 

based on prior experience of missile design. To give an exaggerated example, a missile 

with a diameter of a centimeter would never make it 100km. Correspondingly, a missile 
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with a 3m diameter may be able to reach intercontinental ranges and was therefore too 

large for the actual missile being observed. For this reason, the diameter was bounded to 

be within 20cm and 150cm. The bounds for the remaining variables will be given later in 

Table 1. 

It was discovered early during the analysis that different combinations of the design 

variables could create infeasible missile designs. This would occur even though the 

values for all of the parameters are within realistic bounds. For example, the smallest 

diameter, when paired with the longest lengths, produces a missile that resembles a pencil 

the length of a telephone pole. This is of course an exaggeration, but long, thin missiles 

and short, fat missiles are not realistic. This is true even when the individual design 

variables are within realistic bounds. The conclusion here is that the diameter and length 

of the missile are somewhat dependent on each other. The result of this dependency is a 

large proportion of unrealistic or infeasible missiles. 

A method was needed to reduce the dependency of the parameters. To accomplish this, 

each of the length parameters were normalized by dividing by the diameter. This method 

resembles dimensional analysis that is used throughout the engineering sciences. The 

design parameters that represent length then became LJD, Le/D, LJD, Lp/D, and Lb/D. 

The other design variables were also investigated for dependencies. Intuitively, large 

missiles would tend to be heavier than small missiles. Therefore, a dependency must 

exist between the diameter, lengths, and mass of the missile. The mass seems somewhat 

18 



proportional to volume, therefore the density, p, of the missile was chosen to replace the 

mass. Also, aerodynamic control surfaces are theoretically related. Knowing this, wing 

area and location might be related to the fin area. However, even with several results 

from MIDAS, a simple relationship among the design variables for the aerodynamic 

controls could not be found. 

These changes to the basic set of design variables were not expected initially and were 

proposed only after initial optimization runs failed. A useful lesson is the importance of 

reducing the dependencies between design variables. The final set of quasi-independent 

design variables was: 

x = [D, p, Lr/D, Le/D, U/D, Lp/D, Lb/D, Xw, Aw, Af, T/W, nose]. 

The variables (with the exception of /?and T/W) are graphically shown in Figure 3. (Note 

the nose cone is not accurately represented.) 

Figure 3 - Design Variables Illustrated 
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The initial minimum and maximum bounds for these design variables are listed in 

Table 1. Also included in the table, is the number of bits per variable used for the binary 

encoding used throughout this study. The number of bits is determined by the desired 

precision for the parameters. For example, the precision of the diameter was set at about 

lcm, thereby requiring 7 bits ((150-20) / 27 = 1.015625cm). A more precise measurement 

was deemed unnecessary for this proof of concept. 

Table 1 -Initial Design Variable Bounds 
Variable mm max units #bits 

D 20 150 cm 7 
P 1000 3000 kg/m3 8 

U/D 1 3 - 8 
U)Y) 2 4 - 8 
U/D 1 3 <■ 8 
UJV) U 4 - 8 
WL> 0 2 - y 
Xw Ln Ln + U cm 9 
Aw 0.05 1.0 m 7 
Af 0.05 1.0 m 7 

T/W 5 25 - 7 
nose 1 4 - 2 

The total number of bits for the entire missile was 88, which made the design space 

equivalent to 288 = 3.1xl026 different possible missiles. In order to put this number into 

perspective, an analyst would have to evaluate a million designs per second for 10 trillion 

years, in order to enumerate each and every possible design. Hence, there is a need for a 

much quicker, optimized exploration of the potential design space. 

20 



3.3 Trajectory Calculation via MIDAS 

The predicted trajectory of the missile must be compared to the observation in order to 

calculate the fitness of each individual. This means that the design variables, as 

determined by the GA, must be run through MIDAS. This process required three distinct 

steps: 1) the creation of a MIDAS input file based upon the design variables, 2) the 

external execution of MIDAS, and 3) the data collection of the predicted trajectory. 

These steps defined how the data was gathered that would later be used for the fitness 

calculation. 

A generic MIDAS input file was constructed which included missile geometry definition, 

aerodynamics, propulsion, mass properties, as well as the desired trajectory profile that 

would be flown. Several of these MIDAS files included further assumptions of early 

observations or other realistic assumptions about the type of missile that was trying to be 

matched. The idea was to create a template for a given missile that could be filled in with 

an individual missile's assumed geometry. See Appendix B for these input files. 

Once the input files were created, MIDAS was executed from within the GA. This was 

done with an external execution command. After MIDAS had finished, the GA was then 

able to access the MIDAS output files. 

It was soon discovered that there would still be unrealistic missiles that defied some laws 

of physics or hardwired MIDAS assumptions, even with the realistic variable bounds and 
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the diminished variable dependencies. MIDAS would fail and not attempt to fly the 

missile along the desired profile in some circumstances. 

The MIDAS err.log file was therefore first inspected by the GA fitness algorithm. If the 

error file showed the run had not been successfully completed, the particular missile was 

considered infeasible. An infeasible missile, however, still needed an assigned fitness 

value. In order to discourage any infeasible missile from reproducing and procreating its 

undesired traits, the fitness was assigned a very poor value. In this way, the infeasible 

trait of the missile would have a very small chance of continuing into future generations. 

For missiles that were feasible, the MIDAS output files had to be input into the GA 

fitness array. Because of difficulty in reading directly from standard MIDAS output files, 

a new output file was created within MIDAS. This new output file included the relevant 

information about the predicted trajectory including range, altitude, speed, and time. If 

other data was of interest, the MIDAS code would need edited and recompiled, while 

adding the relevant parameters to the output print statement. The data retrieved from the 

MIDAS output files was then used for the specific fitness functions that are described for 

the sample problems in the following sections. 
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IV.    Analysis - Low Information 

4.1 Introduction 

The objective of the sample problems was to investigate whether a genetic algorithm 

could successfully reverse engineer a missile. The first problem was intended to 

represent a case with little observed data. The data for each sample problem was 

generated from a hypothetical missile created by analysts at NAIC at the unclassified 

level. This allowed the analysis to remain unclassified because it merely represented a 

nominal foreign missile and was not a real one. The design was then flown through 

MIDAS along a realistic flight profile to represent an intelligence gathered telemetry. 

The profile that the actual missile was flown against in MIDAS provided the observation 

for trajectory comparisons. The commanded profile began with a launch from an aircraft 

at an altitude of 5km, at a distance of 103km from its target. After a 5 second delay, it 

climbed to an altitude of 15km. This altitude was maintained until the missile was 40km 

from its target. From this point forward, the missile guidance performed standard 

proportional navigation until target impact. This was also the profile that MIDAS used to 

command the candidate missiles during trajectory prediction. 

To ensure that the author was unbiased throughout the study, the actual design 

dimensions of this observed missile were withheld until the very end of the analysis. 

This was comparable to the situation being mimicked - the attempted reverse engineering 

of a foreign missile. The only facts that were provided were the altitude, speed, and 
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range of the observed trajectory as a function of time. For the low information analysis, 

only the impact conditions were collected from the observation. 

4.2 Impact Fitness Function 

The goal of this sample case was to find the missile or missiles that could match the 

observed impact conditions. This low information approach represented a missile that 

was advertised by a foreign government that was not actually observed in flight, or was 

merely observed at target impact after the launch. The missile was advertised or 

observed to travel 103km, while following the commanded profile, and impacting after 

341 seconds at a speed of 254.5m/s. 

This observed impact was then compared against the candidate missile's impact in order 

to calculate an appropriate fitness. The fitness function was therefore a combination of 

the range, speed, and time of the candidate missile at impact as compared to that of the 

observation. An equal weighting of the percentage difference squared of each of these 

factors was chosen to represent the penalty of not reaching the goal conditions. This is 

basically a least squares fit of the sample data against that of the known. Hence, the low 

information fitness function was defined as: 

F(x) = - 
(K-RA

2
  fv,.-v„Y  (t,-0 

\      Ro      J \     Vo      J 

"i      "o 

V     lo     J 

The maximum value of this fitness function is zero. This occurred when each of an 

individual's impact conditions exactly matched those of the observation. If there was any 
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deviation, then a value was subtracted from its fitness, proportional to the percentage 

squared of that deviation. The larger the negative value, the worse the fitness. A very 

low value of -999.9 was given to individuals that could not be evaluated by MED AS and 

were considered infeasible. 

4.3 Preliminary Results 

The preliminary results revealed a serious problem - a majority of missiles were still 

infeasible. The fraction of feasible missiles within the initial generation was 20-25%. 

This number varied due to the randomization effects of the initialization seed. The 

number of feasible missiles, per each generation, for a single random seed is shown in 

Figure 4. 

Over successive generations, the missiles that were initially feasible reproduced with 

corresponding missiles of high fitness. This increased the overall quantities of 

individuals that were feasible over time. This trend is clearly shown within the figure by 

the increasing data. However, random effects of crossover and mutations still allowed a 

varied population. After approximately twenty generations the percentage of feasible 

missiles had finally reached an acceptable level of around 80% feasibility. 
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Figure 4 - Preliminary Number of Feasible Missiles 

A consequence of the high number of initial infeasible missiles was a much less efficient 

exploration of the design space. In effect, the first generation was five times smaller than 

if all of the missiles had been feasible. The useful population was only twenty feasible 

individuals. The missiles that were initially feasible dominated the results of the GA and 

the design space was not being explored well. 

4.4 Increasing Feasible Solutions 

The first step that helped increase the number of feasible solutions was tightening the 

design variable bounds. The lower bounds of the propulsion and boat tail lengths were 

raised, based upon further scrutiny and engineering judgements. Next, the bounds on the 

diameter and the wing and fin areas were adjusted in order to exclude areas where none 

of the designs were feasible. These updated variable bounds are listed in Table 2. The 
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number of bits was held constant to help refine the reduced design space and increase 

parameter precision. 

Table 2 - Final Design Variable Bounds 
Variable mm max units #bits 

D 25 60 cm 
P 1ÜÜÖ 30ÜÖ kg/m3 8 

WD 1 3 - 8 
Le/D 2 4 - 8 
WD 1 3 - 8 
Lp/D 2 4 - 8 
WD 1 2 - 9 

Xw U Ln + Le cm 9 
Aw 0.1 0.7 m~ 7 
Af Ö.Ü5 0.5 m 7 

T/W 5 25 - 7 
nose 1 4 - 2 

In addition, checks on the feasibility of the remaining missiles were added to the genetic 

algorithm. If MIDAS could not evaluate a missile against the commanded flight profile, 

it was not allowed into the missile population. In effect this was "a brave new world" 

method of screening out savages before their birth [Huxley 1932]. A small percentage of 

infeasible missiles, however, were allowed to survive with the overall goal set at 80-90% 

feasibility. This allowed some small chance of a mutation to survive into future 

generations. This new feasibility check was added during the creation of the initial 

generation as well as during reproduction between the two parents. The revised genetic 

algorithm flow is given in Figure 5. 
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Figure 5 - Revised GA Flow 

During each check of feasibility, a random draw was made which could overrule the 

feasibility check and accept a certain percentage of the infeasible missiles. During 

initialization, 15% of the infeasible missiles were accepted.   In reproduction during 

successive generations, 60% were accepted. These values kept the number of feasible 

missiles above the desired 80-90% goal as shown in Figure 6. 
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Figure 6- Number of Feasible Missiles after Restrictions 

4.5 Low Information Results 

With the number of feasible missiles at an acceptable level, the process was performed 

again. Next, the relative fitness of each of the missiles was studied. After approximately 

25 generations, the GA had found many different missile designs that had nearly matched 

the observed conditions. The maximum fitness value per generation steadily increased 

up to this point. The population history of the best and 4th best missile fitness values is 

shown in Figure 7. The average, overall population fitness is shown on a much larger 

scale in Figure 8. 
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Figure 7 - Best Low Information Fitness Values 

The 4th best missile was chosen because the top four or more missiles seemed to produce 

good results across many different randomization seeds. The 4th best missile could also 

be considered the 96th percentile point of the population. This provided a better view of 

the population by throwing out possible outliers that had the very best fitness values. It 

also proves that the top individual was not completely driving the overall results. 

Elitist strategy forces the best fitness value to increase, or at least remain the same, from 

one generation to the next as seen in Figure 7. Random effects of crossover and mutation 

cause the 4th best fitness values to vary significantly between generations, but generally 

increasing over successive generations. In Figure 8, the entire population can be seen 

converging in fitness as well, but not necessarily in design. The average population 

fitness continues to increase through, at least, the 25th generation. 
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Figure 8 - Low Information Average Fitness Values 

The success story of Figure 7 is that multiple missiles, at least four, are coming very close 

to matching the impact conditions of the observation. With fitness values greater than - 

0.005, the conditions are nearly a perfect match. 

After about 40 generations, it was found that the population would begin to converge in 

design as well, and several missiles would begin to look similar. For this reason, detailed 

study of the best individual missiles was made at the 25th generation when there were still 

a variety of design parameter values that were different among the top missiles. The 

impact conditions for the best four missiles at the 25th generation are listed in Table 3, 

with their respective design characteristics. 
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Table 3 - Low Information Best Missiles 

best 2nd best! 3rd best! 4th best 
D (cm) 31.6; —_ 32.7! 

315.41 
30.8; 

312JT 
30.0 

372,2 
Ln (cm)    ! 32.9! 34.01 51.1; 41.7 

U (cm)    | 118.0; 96.0 69.5! 118.0 

U (cm)    ; 69.31 39.6"! 49.6! 68.7 

Lp (cm)    | 110.1; 99.61 110.4! 110.9 

Lw (cm)   i 62.4 46.21 31.8! 32.9 

Xw (cm)   ! 56.9! 68.0!        66.0; 91.3 

«W)...L 639.9! 549.4! 485.5! 538.7 

A*(m2)    ! 0.402; 0.591 j 0.435! 0.601 

Ä(m2)    ! 0.128! 0.061! 0.078; 0.075 
T/W 20.6; 23.il 21.2! 21.5 
nose 11 2! 3! 1 

time (sec) 1 

range (km) j 103.011 103.009! 103.009! 103.009 
fitness 0.0000; ■0.0007! ■0.0010! ■0.0020 

A fitness value of-0.002 means that the missile's impact conditions are less than 0.2%, 

different from the observed missile as a sum of squares. Therefore, each of these missiles 

is close enough to match the observed conditions that they should all be considered 

strong candidates as a match for the actual missile. They should warrant further detailed 

analysis by the intelligence analysts. Also, these are most likely better matches than an 

analyst could accomplish through the trial and error process. 

Casual analysis of Table 3 reveals that some of the design variables between each missile 

are nearly the same, while others are quite different. The missile diameter, for example, 

is about 30.8-32.7 cm for each of the top four missiles. This would lead one to conclude 

that the diameter of the actual missile is also within this range. Many of the other 

variables are different, and can be visualized in Figure 9. The overall length is shown to 

vary greatly, as well as the location and size of the forward wing. The nose contour was 
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found to be a very minor contributor to the overall fitness, and is not shown in the 

diagram. 

Figure 9 - Low Information Best Missile Diagrams 

This set of optimal missiles leads to the conclusion that the genetic algorithm is 

successfully locating missiles, within the design space, that can match the observation, 

and that there are various different designs that can do so. 

The question then arose whether other matching designs existed within the design space 

in areas that had not yet been explored. Also remembering that this is a random process, 

several different randomization runs should be performed anyway. The initial 

randomization seed was changed in the GA, and another missile evaluation GA run was 

conducted. The results of the 25th generation of the second randomization seed are given 

in Table 4 and Figure 10. 
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Table 4 - Other Low Information Missiles 

best 2nd best I 3rd best! 4th best 
38.2! 39.3! 39.3! 38.5 

L (cm)    i 419.6; 455.8! 476.6! 411.6 

U (cm)    1 51.1! 39.6! 40.3! 38.8 

U (cm)    1 109.4! 95.9! 137.0 90.0 

U (cm)    i 110.2! 114.9! 111.8! 114.9 

Lp (cm)    j 101.0! 155.5J 116.6! 92.4 

Lbf (cm)   j 47.8! 49.8! 70.9! 75.5 

Xw (cm)    | 59.0! 46.4 128.7! 81.8 
M (kg)     j 577.8! 577.6! 617.6! 590.0 

A*(m2)    | 0.639: 0.464! 0.629 j 0.506 

Mm2)     ! 0.057! 0.054 0.050; 0.050 
T/W 22.5! 13.8! 11.1! 20.6 
nose 2! 2 1! 2 

time (sec) j 345.07! 348.44 346.86; 325.37 
speed (m/s)j 
ranqe (km) i 

257.2! 
103.01! 

262.2! 
loliMj 

265.1! 
"1ÖT.ÖÖ9T 

252.6 
103.009 

fitness ■0.0003! -0.0014! 41.0020! -0.0022 

Figure 10 - Other Low Information Best Missile Diagrams 

These missiles are clearly different from those of the first seed, but also match the 

observed missile impact conditions. A significant difference however, is that the 

diameter of these missiles is about 38.2-39.3 cm. This is drastically different from the 

common diameter of the first seed. 
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The nearly identical diameters, per each seed, shows that a convergence in population 

design has already begun, even before the 25th generation. This is because there are 

many different missile designs that are capable of matching the observed missile 

characteristics based solely on the impact conditions. Once a single missile was 

discovered by the GA that nearly made a match, that missile became the most sought 

after design for reproduction. Many descendents continued to carry on its traits. 

4.6 Summary 

The genetic algorithm process of reverse engineering missile designs can work when a 

few steps are added to the standard GA flow. Tightening of design parameter bounds, 

investigation of missile infeasibility regions, and random feasibility checks were 

necessary to maintain a high percentage of feasible missiles within the population. With 

these changes, it was proven that several missiles could be designed to match the sample 

observation. For this low information problem, many of these matching solutions may 

not have been found without the use of the genetic algorithm. 
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V.      Analysis - High Information 

5.1 Introduction 

The second sample problem included more information from the observation than just the 

impact conditions. Knowledge of multiple waypoints along the entire trajectory 

including time, range, speed, and altitude for each point was collected during the 

observed missile's flight. The question remained, for this problem, whether the GA 

could reverse engineer a missile that matched the points along the given trajectory. 

As with the first sample problem, the hypothetical missile was fabricated by NAIC and 

was run through MIDAS along the same commanded profile, which simulated the 

observation. The collected data for the observed missile is shown in 10 sec increments in 

Figure 11, and is listed numerically in Appendix C within the GOALSl.inp file. 
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Figure 11 - Observed Trajectory 
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5.2 Multiple Waypoints Fitness Function 

Several terms had to be added to the low information fitness function in order to compare 

the match of an individual missile's trajectory against the entire observation. As before, 

the squared differences of the range and speed were included. The squared difference of 

the altitude relative to the observation was now added. These terms were included at 

each of the N observed waypoints along the trajectory, and were averaged by dividing by 

iVthus producing an averaged fitness as: 

1   N 

N% 

RJJ-RQA    (vij-voA    (aij~aoA 

Roj   )    y   voj   )    \   aoj   j 

There was a minor problem with this simple least squares fit. There was no guarantee 

that the individual missile would have the same time of flight as the observed missile. It 

was possible that the individual missile might take a much longer or much shorter length 

of time to accomplish the commanded profile. This depended on average speed, which in 

turn depended on mass, T/W, and so on. In fact, there was a small chance of the 

trajectories taking exactly the same amount of time. The problem then, was in how to 

match up each of the N waypoints in order to compare the two trajectories. 

As an example, if the observed missile flew for 351 seconds and the individual missile 

candidate flew for only 300, the remaining 51 seconds of flight would be treated as 

severe penalties to the fitness function. This was because there was no data from the 

individual missile to compare against for nearly the last minute of flight. In order to 
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solve this problem, a lengthening, or shortening, of the individual's trajectory was 

performed to make each of the trajectories have the exact same duration. 

Once the individual trajectory had been sized to exactly fit the observation, then the 

range, speed, and altitude of the individual missile were interpolated at the time of the 

collected waypoints. This permitted a one-for-one comparison between the trajectories, 

without the waypoints of one trajectory extending beyond the impact point of the other. 

In order to penalize the individual missile for this trajectory fitting, the final term of the 

fitness function accounted for the time adjustment. The resulting high information fitness 

function was thus defined as: 

1   N 

N% 

Rij ~ Roj 

\     RoJ      J 

V" — V  • VIJ VOJ 

V      °J     J 

ajj-aoj 

V    aoJ    J 

tjN      toN 

V      toN      J 

Once again, the maximum fitness value was zero and an infeasible missile was assigned a 

very low fitness of-999.9 to discourage reproduction. Direct comparison of the values 

of this high information fitness function with the low information fitness function is not 

appropriate because there are many more terms in the high information fitness function. 

The importance of the relative differences between the low and high information fitness 

values is also much different. 
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5.3 High Information Results 

The high information results tended to show the same properties as those of the low 

information results. The best through 4th best missiles increased in fitness through the 

20-25* generation, and then leveled off. The best missiles also began to converge in 

design by the 40th generation. Figure 12 shows the high information fitness values as 

they increased over time for a given initial randomization seed. 
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Figure 12 - Best High Information Fitness Values 

rth Table 5 lists the missile design parameters for the best four missiles at the 25 

generation, and Figure 13 shows the missile diagrams. The missiles are different in most 

parameters including section lengths, wing location and position, and overall mass. The 

diameters, however, are nearly the same at 36.6-37.7 cm. 
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Table 5 - High Information Best Missiles 

best    12nd best | 3rd best! 4th best 

ycm) 
Ln (cm) 

398.6!       458.41 466.9! 411.9 _ 

U (cm) 138.9!       143.41 137.1! 133.4 

U (cm) 51.01        85.9] 107.7! 73.6 

Lp (cm) 91.6!       109.61 122.3! 88.6 

Lw (cm) 57.6!        62.5} 57.6! 57.1 

Xw (cm) 1Ö7.7!       120.71 90.1! 118.8 

JLM 501.9!       543.8! 620.4! 492.1 

Aw(m2) 0.369        0.530! 0.492! 0.218 

A(m2) 0.0611       0.089! 0.103 0.068 
T/W 17 _*|         15.4! 15.2! 23.3 
nose 31             4! 4! 4 

fitness I    -0.0026!    -0.0081! -0.0150! -0.0156 

600 

Figure 13 - High Information Best Missile Diagrams 

In order to get a feel for how good these fitness values are, the predicted trajectory for the 

best missile is plotted overtop of the observed missile waypoints in Figure 14. The X's 

and O's are the points collected from the observed missile as in Figure 11, while the 

continuous lines are the predicted trajectory results. As can be seen, the reverse 

engineered missile has performance almost identical to the actual missile during the 
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observation. The range, altitude, and speed are nearly a perfect match. Not shown in the 

figure is also a very good match in time of flight as well. 
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Figure 14 - Trajectory Waypoints Comparison 

In addition to this best missile, several others at the 25th generation could also be 

considered strong candidates for being the observed missile. 

As with the low information problem, several different initialization seeds were run due 

to the inherent randomization processes of the GA. The resulting best missiles per each 

seed varied somewhat between the populations, but both were extremely good matches of 

the observation. The best missiles for seven different initialization seeds are listed in 

Table 6. 
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Table 6 - Multiple Seed Best Missiles 

1   seecH   j seed2   i   seed3   j seed4   | seed5   I seed6   ! seed7 
D (cm) 37.7! 34.9!        34.1 38.2! 31.6! 34.1! 34.9 
L(cm) 398.6! 380.2!       417.2! 354.3! 379.0! 403.4! 342.9 

Ln (cm) 59.5! 66.1]        78.5! 52.9! 75.3! 64.0! 41.8 

U (cm) 138.9! 78.9]       107.2] 79.8! 94.2! 105.6! 100.2 

Lw (cm) 51.0! 35.5 i        84.6! 47.8! 77.2! 81.4! 74.6 

Lp (cm) 91.6; 132.0]       100.01 131.0! 86.3! 88.0! 86.3 

Xw (cm) 

_JIM_ 
Mm2) 

57.6] 

1       107JT 
67.7]        46.8! 

 93^8]       I3T2T 

_>7j.      ™_. 

42.7! 
04;8T 

0487i 

46.0! 

"~ 0L313T 

63.5! 

0198! 

40.0 

ZJ5JM 
O93 

A,(m2) 0.061 Ö.068J       0.054! 0.142! 0.075 0.075! 0.093 
T/W I        17.4: 22.b!         14.9! 24.2! 22.6 17.8! 22.0 
nose 31 41             3! 4! 1! 4! 4 

fitness !    -0.0026! ■0.0011!    -0.0038! -0.0010! -0.0034! -0.0026! -0.0013 

Among the independent cases, it still appeared that certain traits such as diameter had 

begun to converge by the 25th generation, but were very different between the seeds. 

This once again was because many different designs were capable of matching the given 

observation, even with the multiple waypoint objectives. Certain good design traits were 

randomly located in early generations, then were passed on to a larger and larger 

percentage of children throughout future generations. This would begin the converging 

process of design. 

5.4 Summary 

Even with the increased restrictions of multiple waypoints, the genetic algorithm was 

able to locate several missiles within the design space that matched the observation. The 

high information fitness function that included trajectory sizing and output value 

interpolation seemed to work well in ranking the individuals and directing the 

optimization. Many of the best missiles that were designed using this process could be 
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considered for future detailed engineering analysis, and might not have been found 

without the use of the genetic algorithm. 
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VI.    Conclusions and Recommendations 

This approach of applying genetic algorithms to the reverse engineering missile design 

problem was successful. The interface between the missile design program MIDAS and 

the GA permitted an automated and timely search of the design space. The GA was also 

able to identify a set of missiles that very closely matched the observations and the 

intelligence analyst would be able to consider for further detailed analysis. Many of 

these designs would have been missed by the previous trial and error approach; or would 

have taken months to find. 

This study demonstrated a useful procedure for reverse engineering any type of design. 

A fundamental step is the selection of design parameters to fully describe a candidate 

design, yet are limited enough to keep the problem manageable. The model interface 

between the GA and MIDAS demonstrated how input and output collection algorithms 

could assist with the fitness calculation process. Finally, the fitness functions themselves 

were able to successfully direct the optimization search toward more optimum designs 

that matched an observation including special handling of infeasibility.   This GA 

approach might also be useful in mission design problems where specific mission goals 

are known and a system must be developed to accomplish that mission. 

In order to reduce the number of candidate missiles further, additional information would 

probably be needed to help constrain the design problem. Additional observational data 

such as another observed trajectory, or tighter restrictions on the design variable bounds 
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should diminish the number of matching missiles. The exact missile length or diameter, 

for example, might be obtained from a photograph, significantly reducing the feasible 

design regions. The goal of the genetic algorithm should be to help the intelligence 

analysts consider a set of candidate missiles for further detailed analysis, but should not 

overwhelm them with too many options. 

It was also discussed during the defense of this thesis, that replacing the design variables 

that were used here with certain aerodynamic coefficients might be a good idea. This 

would create a two-step approach where the aerodynamic characteristics of the missile 

are first determined, then mapped into a realistic geometric planform. This could limit 

the number of matching missile solutions. 

Finally, the design parameters that were used in this study for the actual missile during 

the observation are given in Table 7. This missile is also diagramed as the example 

missile in Figure 3 in Section 3.2. The actual missile is much longer and weighs much 

less than any of the best missiles that the GA was able to locate in the low/high 

information analyses. This was probably due to the plethora of missile designs that were 

able to match the observation. Eventually, an initialization seed probably could have 

found the actual missile, but it did very well finding many others. The process was 

proven to work, and is recommended for future analysis in this as well as other design 

areas. 
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Table 7 - Actual Missile 

: ACTUAL 
D (cm) 35.0 
L(cm) 445.0 
U (cm) 70.0 

U (cm) 135.0 
U (cm) 75.0 
Lp (cm) 110.0 

Lw (cm) 55.0 
Xw (cm) 200.0 

„JLBsL. 505.7 
Aw(m2) 0.348 

Aj(m2) 0.084 
T/W 19.6 
nose 1 

fitness I     0.0000 
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Appendix A - How to use GA with MIDAS 

The genetic algorithm and the missile design software MIDAS are located on an NAIC 

mainframe, UNIX based computer at Wright-Patterson AFB. There are two required 

input files for the genetic algorithm, and several required for MIDAS. Example MIDAS 

input files that were used for this study can be found in Appendix B, and the GA input 

files are in Appendix C. 

The MIDAS input files include all that is required for the execution of MIDAS. This 

includes all of the early assumptions about the missile including basic planform 

geometry, type of propulsion, aerodynamic coefficients, material properties, and 

commanded profile for matching the trajectories. The only inputs that are missing from 

these files are the design variables that must be defined via the GA. The GA adds the 

design variables to the MIDAS input files when the fitness function is calculated. If the 

set of design variables is to be changed, the GA code would have to be edited, 

recompiled, and linked. 

The first GA input file GOALSl.inp contains the data from the observation. This is the 

objective of the optimization process. The file is simply a table of the flight path angle 

gamma, speed, altitude, and range as a function of time. Gamma was initially part of the 

analysis, but was removed when it was realized that the flight path angle was an input to 

MIDAS and was not really being calculated within. If other types of data are desired to 
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be part of the fitness function, MIDAS itself would have to be edited to add the required 

information. 

The second GA input file defines the design parameters, and the attributes of the genetic 

algorithm. The design parameters are described to the GA as numerical minimum and 

maximum bounds, and number of bits required for each. Other significant GA attributes 

include the size of the population, the types and rates of crossover and mutation, niching 

and elitism options, and the initial randomization seed. Each of these inputs is described 

in detail on the last page of Appendix C. 

In addition to the standard MIDAS output files, the NAIC version of MIDAS now 

includes the output file gadata.out. This file simply lists the predicted trajectory 

characteristics of gamma, speed, altitude, range, weight, thrust, and alpha of the missile 

as a function of time. The GA inputs this file in order to calculate the fitness of the 

individual design. 

In order to obtain the GA code used for this study, contact the author where mentioned 

earlier, or: 

Department of Aeronautics and Astronautics 
School of Engineering 

Air Force Institute of Technology 
Wright-Patterson AFB, OH 

45433-6583 
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Appendix B -MIDAS input files 

These are example input files which are required to use the GA with MIDAS: 
* PFMAINl.inp is the commanded missile profile in MIDAS format. 

The other files are required by MIDAS and represent other assumptions about the missile. 
The only variables that need to be added to these files, to run MIDAS, are the respective 
GA design variables. The GA driver automatically adds these to the MIDAS input files 
when the fitness function is being calculated. 

PFMAINI.inp 
ALFMAX=4*15., 16*20., 
ALTI=5000., 
ALTMAX=30000., 
ATNSVR=2*-1., 3., 17*-1., 
ATNVAL=2*0., 15000., 17*0., 
CRALT=5000., 0., 2*15000., 16*0., 
FPCDLV=20*0., 
FPCON=2*l., 6., 7., 8., 15*0., 
FPCVAL=0., 10., 8*0., 35., 4., 28*0., 1., 4., 1., 157*0., 
FPPARM=4*0., 4., 15*0., 
FPPVAL=0., 9.999, 10., 197*0., 
GRAIN=1., 2., 18*1., 
NZPRIO=20*0, 
PRINTB=1., 
SIDTAB=20*0., 
SKIDTR=0., 
STPVAL=50., 12000., 0., 30., 0.6096, 15*0., 
STPVAR=9., 3., 1., 10., 3., 15*0., 
TARGET=0., 103., 5., 6*0., l.E+30, 2*0., 
THROTL=20*1., 
TPHASE=5., 19*1000., 
TTITLE=' 30km 0.6M', 
TTOTAL=20*1000., 
VELI=0.09, 
XMACHI=2., 

AEINPT.inp 

ALTT=0., 12200., 20000., 30000., 0., 
CDMULT=1., 
CLMULT=1., 
NALTT=4, 
NMACHT=12, 
XMACHT=0.6, 0.8, 0.95, 1.05, 1.2, 1.6, 2., 2.5, 3.1, 3.8, 4.6, 6., 
8*0., 
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AETABL.inp 

ALTD=0., 12200., 20000., 30000., 21*1.E+30, 
CDOTAB=0.314099, 0.296853, 0.411895, 0.627558, 0.665841, 0.596392, 

0.537607, 0.475743, 0.408831, 0.355904, 0.304482, 0.243878, 
8*1.E+30, 0.36947, 0.347861, 0.459611, 0.672329, 0.708492, 
0.634379, 0.571708, 0.505731, 0.434719, 0.377928, 0.323052, 
0.258214, 8*1.E+30, 0.439203, 0.411841, 0.519325, 0.728277, 
0.76173, 0.681731, 0.614215, 0.543151, 0.467094, 0.40556, 
0.346454, 0.276454, 8*1.E+30, 0.570442, 0.531561, 0.630707, 
0.832415, 0.860656, 0.769524, 0.693004, 0.612596, 0.527345, 
0.457215, 0.390478, 0.311273, 428*1.E+30, 

CLATAB=0.338774, 0.343989, 0.351738, 0.377208, 0.401914, 0.381042, 
0.327528, 0.292395, 0.272205, 0.244477, 0.2156, 0.178665, 
88*1.E+30, 

NALTD=4, 4*0, 
NMACHD=4*12, 21*0, 
NMACHL=12, 4*0, 
XCPTOT=237.503, 237.965, 234.003, 237.449, 241.675, 243.434, 247.2, 

253.075, 259.217, 263.088, 266.212, 271.255, 88*0., 
XMACHD=0.6, 0.8, 0.95, 1.05, 1.2, 1.6, 2., 

2.5, 3.1, 3.8, 4.6, 6., 8*1.E+30, 0.6, 0.8, 0.95, 1.05, 1.2, 1.6, 
2., 2.5, 3.1, 3.8, 4.6, 6., 8*1.E+30, 0.6, 0.8, 0.95, 1.05, 1.2, 
1.6, 2., 2.5, 3.1, 3.8, 4.6, 6., 8*1.E+30, 0.6, 0.8, 0.95, 1.05, 
1.2, 1.6, 2., 2.5, 3.1, 3.8, 4.6, 6., 428*1.E+30, 

XMACHL=0.6, 0.8, 0.95, 1.05, 1.2, 1.6, 2., 2.5, 3.1, 3.8, 4.6, 6., 
88*1.E+30, 

AEUNTS.inp 
AMETIN=2., 
AMETOT=2., 

CFAFIN.inp 
AELE=0., 
ALCD=45., 135., 225., 315., 4*-l., 
AR=1.111, 
CPAR=0., 
DTEFWD=-0.01, 
FTE=-1., 
INMS=1, 
INSS=0, 
ISTG=1, 
ITRIM=1, 
NBR=4, 
PCIN=0., 
RADR=0.0619999, 
RADT=0.0619999, 
SAIN=68., 
SLE=-1., 
SPAN=0., 
TCR=0.047, 
TCT=0.088, 
TR=0., 
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CFBASC.inp 
IMTYPE=1, 

CFBODl.inp 
BTADIA=30. , 
BTDMR=1.833, 
HIBSTB=5.08, 
HPEQIP=124.968, 
ITB0AT=1, 
MASTAK=1, 3, 2, 8, 9,  5*0, 
MATBST=2, 
MATLB=7, 
MATNOS=4, 
STHEO=0., 

CFWING.inp 
ALCD=45., 135., 225., 315., 4*-l. 
AR=1.111, 
DWLR=0.092, 
IPT=5, 
ISTG=1, 
NBR=4, 
PCIN=0., 
RADR=0.0254, 
RADT=0. 0619999., 
SAIN=68., 
SPAN=-43.5, 
STE=-1., 
TCR=0.033, 
TCT=0.048, 
TR=0.185, 
TWLR=0.3, 

MPAFIN.lnp 
ISOL=2, 
IWCT=4, 
IWOR=2, 
MSK=7, 
MWCC=6, 

MPBODl.inp 
FBMISC=0.05, 
FSFFL=1.25, 
FSFFS=1.25, 
IDMAP=2, 
ISABOD=l, 
MNCAP=4, 
RNX=14., 
RNZ=25., 
TRIM=0., 

MPCG.inp 
ICG=1, 
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MPCTRL.inp 
DCELIC=0.5, 2*1., 
HMOM=3*0., 
ICSTYP=3, 2*1, 
ISACTL=1, 
ISURFC=3, 2*0, 
OTMAXI=150., 2*10., 
SRIN=100., 2*300., 

MPGUID.lnp 
IGTYPE=2, 
IRTCAD=1, 
RAQRNG=277.8, 
RNGIMU=40.0001, 
RTARGA=9.99999, 
RTDUTY=0.2, 

MPSTAT.inp 
EPR=5., 
ICMIB=1, 
IDESY=3*0, 
IFRDGU=2, 
ISFACR=0, 
RNZU=3*25., 
WWARH=115., 

MPWING.inp 
ISOL=2, 
IWCT=1, 
IWOR=2, 
MSK=6, 
MWCC=7, 

PCMAIN.inp 
BANNER=0., 
CADCMF=2., 
CARPET=0., 
CDODES=-l., 3*0., 
CLADES=-1., 3*0., 
COMPAE=l., 
COMPCF=l., 
COMPMP=l., 
COMPPF=l., 
COMPPR=l., 
NPRDES=1, 
PASSES=10, 
PRALFA=0., 2.7, 2*-99, 
PRALT=7000., 3*0., 
PRAXG=9.8, 3*0., 
PRFRAC=-0.03, 3*1., 
PRGW=150., 3*-l., 
PRMACH=1.2, 3*2., 
PRTHR=4*-1., 
SIZER=1., 
WTPROP=3*0., 
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PCÜNTS.inp 
METIN=1, 
MET0UT=1, 

PCVARY.inp 
INDEX=0, 20000, 28*0, 
NMLIST=' ','$PFMAIN', '$PCMAIN\ 27*' ', 
NPARMS=0, 
UNITS=' ','m', 28*' ', 
VAR=' ', 'ALTI','P3', 27*' ', 

PFUNTS.inp 
PFMETN=2., 
PFMETO=2., 

PRMAIN.inp 
IPRLEV=2, 2*1, 
IPRSYS=3*1, 

PRSR.inp 
AEAT=8., 3*1., 
AEXIT=4*0. , 
ATHR=4*0., 
CSTR1=4*1490., 
FBFS=4*1., 
ISRDS=3, 3*1, 
ISRND=4, 3*1, 
ISROPT=2, 3*1, 
NGRN=2, 3*1, 
PC=5000., 3*6894.76, 
RHOP=4*0.001645, 
WBWT=4*1., 

PRSRBP.inp 
AEXIT=4*0., 
APAT=4*1.5, 
DINSUL=0.0014, 3*0., 
DLINER=0.0014, 3*0., 
PCMAX=8700.01, 3*6894.76, 
TINSUL=0.1, 3*0., 
TLINER=4*0., 
XLBT=20., 3*0., 

PRTABL.inp 
ITABLE=0, 
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Appendix C - GA input files 

These are example input files which are required to use the GA: 
* GOALSl.inp is the missile observation. 
* ga.inp has the GA driver required inputs. 

After the ga.inp file are David L. Carroll's own description's on the use of the GA 
variables [Carroll 98]. 

GOALSl.inp 
Time(sec),Gamma(deg),speed(m/s),Alt(km),Range(km) 
0,0,640.9,5000,0 
5,0,835,5000,3.693 
10,34.53,939.2,6779,7.543 
20,34.53,811.9,12085,15.124 
30,9.11,659.3,14808,21.781 
40,0,583.4,15000,27.937 
50,0,523.4,15000,33.451 
60,0,470.8,15000,38.405 
70,0,423.8,15000,42.864 
80,0,381.2,15000,46.876 
90,0,342,15000,50.482 
100,0,305,15000,53.707 
110,0,271.2,15000,56.58 
120,-0.84,238.6,14993,59.119 
130,-6.08,217.3,14871,61.378 
140,-13.27,209.5,14515,63.465 
150,-18.84,211.5,13926,65.475 
160,-20.76,215.8,13190,67.478 
170,-19.19,215.9,12443,69.505 
180,-15.85,209.1,11799,71.532 
190,-12.97,197.2,11297,73.499 
200,-12.42,184.8,10889,75.357 
209,-14.3,178.6,10511,76.944 
210,-14.49,178.1,10466,77.117 
220,-16.27,174.4,9999,78.81 
230,-17.8,173.9,9489,80.47 
240,-19.14,177,8934,82.128 
250,-20.31,183.6,8326,83.82 
260,-21.35,193.4,7656,85.578 
275,-22.62,211.7,6518,88.388 
280,-22.97,218.1,6101,89.378 
290,-23.56,230.5,5214,91.437 
300,-23.98,241.2,4262,93.595 
310,-24.26,249.3,3259,95.834 
320,-24.41,254.3,2220,98.13 
330,-24.46,256.1,1163,100.455 
340,-24.46,254.8,104,102.782 
340.56,-24.46,254.6,45,102.911 
340.98,-24.45,254.5,1,103.01 

57 



ga.inp 
$ga 

icreep=l, 
idum=-1001, 
ielite=l, 
iend= 0, 
iniche=0, 
irestrt=0, 
iskip= 0, 
itourny=l, 
iunifrm=l, 
kountmx=l, 
maxgen= 100, 
microga=0, 
nchild=2, 
nichflg=l, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
nowrite=l, 
nparam= 12, 
npopsiz= 100, 
nposibl=256, 128, 256, 256, 256, 256, 512, 128, 128, 512, 128, 4, 
parmax=4.0, 60.0, 3.0, 3.0, 4.0, 2.0, 3000.0, 1.0, 0.50, 1.0, 25.0, 4, 
parmin=2.0, 25.0, 1.0, 1.0, 2.0, 1.0, 1000.0, 0.1, 0.05, 0.0,  5.0, 1.0, 
pcreep=0.06, 
pcross=0.5, 
pmutate=0.01, 
$end 
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GA input variable descriptions 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
o 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

icreep 

idum 

ielite 

iend 

iniche 

irestrt 

iskip 

itourny 

iunifrm 

kountmx 

maxgen 

microga 

nchild 

nichflg 

nowrite 

npararn 

npopsiz 

nposibl 

parmax 
parmin 
pcreep 

pcross 

pmutate 

0 for no creep mutations 
1 for creep mutations; creep mutations are recommended. 
The initial random number seed for the GA run.  Must equal 

a negative integer, e.g. idum=-1000. 
0 for no elitism (best individual not necessarily 
replicated from one generation to the next). 

1 for elitism to be invoked (best individual replicated 
into next generation); elitism is recommended. 

0 for normal GA run (this is standard). 
number of last population member to be looked at in a set 

of individuals.  Setting iend-0 is only used for debugging 
purposes and is commonly used in conjunction with iskip. 

0 for no niching 
1 for niching; niching is recommended. 
0 for a new GA run, or for a single function evaluation 
1 for a restart continuation of a GA run. 
0 for normal GA run (this is standard). 
number in population to look at a specific individual or 

set of individuals.  Setting iskip-0 is only used for 
debugging purposes. 

No longer used.  The GA is presently set up for only 
tournament selection. 

0 for single-point crossover 
1 for uniform crossover; uniform crossover is recommended, 
the maximum value of kount before a new restart file is 
written; presently set to write every fifth generation. 
Increasing this value will reduce I/O time requirements 
and reduce wear and tear on your storage device 

The maximum number of generations to run by the GA. 
For a single function evaluation, set equal to 1. 

0 for normal conventional GA operation 
1 for micro-GA operation (this will automatically reset 

some of the other input flags).  I recommend using 
npopsiz=5 when microga=l. 

1 for one child per pair of parents (this is what I 
typically use). 

2 for two children per pair of parents (2 is most common) 
array of 1/0 flags for whether or not niching occurs on 

a particular parameter.  Set to 0 for no niching on 
a parameter, set to 1 for niching to operate on parameter. 
The default value is 1, but the implementation of niching 
is still controlled by the flag iniche. 

0 to write detailed mutation and parameter adjustments 
1 to not write detailed mutation and parameter adjustments 
Number of parameters (groups of bits) of each individual. 
Make sure that nparam matches the number of values in the 
parmin, parmax and nposibl input arrays. 
The population size of a GA run (typically 100 works well). 
For a single calculation, set equal to 1. 
array of integer number of possibilities per parameter. 
For optimal code efficiency set nposibl=2**n, i.e. 2, 4, 
8, 16, 32, 64, etc. 
array of the maximum allowed values of the parameters 
array of the minimum allowed values of the parameters 
The creep mutation probability.  Typically set this 
as (nchrome/nparam)/npopsiz. 
The crossover probability.  For single-point crossover, a 
value of 0.6 or 0.7 is recommended.  For uniform crossover, 
a value of 0.5 is suggested. 
The jump mutation probability.  Typically set = 1/npopsiz. 

59 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2.  REPORT DATE 

Dec 99 

3.  REPORT TYPE AND DATES COVERED 

Master's Thesis 
4.  TITLE AND SUBTITLE 
REVERSE ENGINEERING OF FOREIGN MISSILES VIA GENETIC ALGORITHM 

6. AUTHOR(S) 

DAGSI 
Jon D. Woltern 

5.   FUNDING NUMBERS 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

AFIT/ENY 
2950 P St 
Wright-Patterson AFB, OH 45433-7765 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GSE/ENY/99D-01 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Mr. Skip Campbell 
NAIC/TANW 
4180 Watson Way 
Wright-Patterson AFB OH 45433-5648 
DSN 757-8800 and 937-257-8800 ;  
11. SUPPLEMENTARY NOTES 

Lt Col Stuart C Kramer 
DSN 785-3636 x 4318 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release Distribution Unlimited 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
One mission of the National Air Intelligence Center (NAIC) is the reverse engineering of foreign missile weapon systems 
from incomplete observational data. In the past, intuition and repeated runs of a missile performance model were required to 
converge to a solution compatible with observed flight characteristics. This approach can be cumbersome and 
time-consuming, as well as being subject to undesirable influences from the analyst's preconceptions and biases. 

An alternative approach has been created to apply genetic algorithm (GA) techniques to allow automation of the process, 
wider exploration of the design space, and more optimal solutions matching the observational data. The GA, when interfaced 
with a missile performance model, was able to identify a set of missiles that very closely matched the observed performance 
of a given sample missile. The approach was able to provide the analyst with multiple candidate missiles for further analysis 
that would have been missed by the previous trial-and-error approach. 

14. SUBJECT TERMS 
Genetic Algorithm, optimization, air-to-ground, missile 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 
- 71 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18       , nA 
Designed using Perform Pro, WHS/DIOR, Oct 94 


